1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
// Copyright 2019-2020 Parity Technologies (UK) Ltd.
// This file is part of Substrate.

// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Substrate.  If not, see <http://www.gnu.org/licenses/>.

//! Traits for SRML.
//!
//! NOTE: If you're looking for `parameter_types`, it has moved in to the top-level module.

use sp_std::{prelude::*, result, marker::PhantomData, ops::Div, fmt::Debug};
use codec::{FullCodec, Codec, Encode, Decode};
use sp_core::u32_trait::Value as U32;
use sp_runtime::{
	ConsensusEngineId, DispatchResult, DispatchError,
	traits::{MaybeSerializeDeserialize, SimpleArithmetic, Saturating},
};

use crate::dispatch::Parameter;

/// Anything that can have a `::len()` method.
pub trait Len {
	/// Return the length of data type.
	fn len(&self) -> usize;
}

impl<T: IntoIterator + Clone,> Len for T where <T as IntoIterator>::IntoIter: ExactSizeIterator {
	fn len(&self) -> usize {
		self.clone().into_iter().len()
	}
}

/// A trait for querying a single fixed value from a type.
pub trait Get<T> {
	/// Return a constant value.
	fn get() -> T;
}

impl<T: Default> Get<T> for () {
	fn get() -> T { T::default() }
}

/// A trait for querying whether a type can be said to statically "contain" a value. Similar
/// in nature to `Get`, except it is designed to be lazy rather than active (you can't ask it to
/// enumerate all values that it contains) and work for multiple values rather than just one.
pub trait Contains<T> {
	/// Return `true` if this "contains" the given value `t`.
	fn contains(t: &T) -> bool;
}

impl<V: PartialEq, T: Get<V>> Contains<V> for T {
	fn contains(t: &V) -> bool {
		&Self::get() == t
	}
}

/// The account with the given id was killed.
#[impl_trait_for_tuples::impl_for_tuples(30)]
pub trait OnFreeBalanceZero<AccountId> {
	/// The account was the given id was killed.
	fn on_free_balance_zero(who: &AccountId);
}

/// Outcome of a balance update.
pub enum UpdateBalanceOutcome {
	/// Account balance was simply updated.
	Updated,
	/// The update led to killing the account.
	AccountKilled,
}

/// A trait for finding the author of a block header based on the `PreRuntime` digests contained
/// within it.
pub trait FindAuthor<Author> {
	/// Find the author of a block based on the pre-runtime digests.
	fn find_author<'a, I>(digests: I) -> Option<Author>
		where I: 'a + IntoIterator<Item=(ConsensusEngineId, &'a [u8])>;
}

impl<A> FindAuthor<A> for () {
	fn find_author<'a, I>(_: I) -> Option<A>
		where I: 'a + IntoIterator<Item=(ConsensusEngineId, &'a [u8])>
	{
		None
	}
}

/// A trait for verifying the seal of a header and returning the author.
pub trait VerifySeal<Header, Author> {
	/// Verify a header and return the author, if any.
	fn verify_seal(header: &Header) -> Result<Option<Author>, &'static str>;
}

/// Something which can compute and check proofs of
/// a historical key owner and return full identification data of that
/// key owner.
pub trait KeyOwnerProofSystem<Key> {
	/// The proof of membership itself.
	type Proof: Codec;
	/// The full identification of a key owner and the stash account.
	type IdentificationTuple: Codec;

	/// Prove membership of a key owner in the current block-state.
	///
	/// This should typically only be called off-chain, since it may be
	/// computationally heavy.
	///
	/// Returns `Some` iff the key owner referred to by the given `key` is a
	/// member of the current set.
	fn prove(key: Key) -> Option<Self::Proof>;

	/// Check a proof of membership on-chain. Return `Some` iff the proof is
	/// valid and recent enough to check.
	fn check_proof(key: Key, proof: Self::Proof) -> Option<Self::IdentificationTuple>;
}

/// Handler for when some currency "account" decreased in balance for
/// some reason.
///
/// The only reason at present for an increase would be for validator rewards, but
/// there may be other reasons in the future or for other chains.
///
/// Reasons for decreases include:
///
/// - Someone got slashed.
/// - Someone paid for a transaction to be included.
pub trait OnUnbalanced<Imbalance: TryDrop> {
	/// Handler for some imbalance. Infallible.
	fn on_unbalanced(amount: Imbalance) {
		amount.try_drop().unwrap_or_else(Self::on_nonzero_unbalanced)
	}

	/// Actually handle a non-zero imbalance. You probably want to implement this rather than
	/// `on_unbalanced`.
	fn on_nonzero_unbalanced(amount: Imbalance);
}

impl<Imbalance: TryDrop> OnUnbalanced<Imbalance> for () {
	fn on_nonzero_unbalanced(amount: Imbalance) { drop(amount); }
}

/// Simple boolean for whether an account needs to be kept in existence.
#[derive(Copy, Clone, Eq, PartialEq)]
pub enum ExistenceRequirement {
	/// Operation must not result in the account going out of existence.
	///
	/// Note this implies that if the account never existed in the first place, then the operation
	/// may legitimately leave the account unchanged and still non-existent.
	KeepAlive,
	/// Operation may result in account going out of existence.
	AllowDeath,
}

/// A type for which some values make sense to be able to drop without further consideration.
pub trait TryDrop: Sized {
	/// Drop an instance cleanly. Only works if its value represents "no-operation".
	fn try_drop(self) -> Result<(), Self>;
}

/// A trait for a not-quite Linear Type that tracks an imbalance.
///
/// Functions that alter account balances return an object of this trait to
/// express how much account balances have been altered in aggregate. If
/// dropped, the currency system will take some default steps to deal with
/// the imbalance (`balances` module simply reduces or increases its
/// total issuance). Your module should generally handle it in some way,
/// good practice is to do so in a configurable manner using an
/// `OnUnbalanced` type for each situation in which your module needs to
/// handle an imbalance.
///
/// Imbalances can either be Positive (funds were added somewhere without
/// being subtracted elsewhere - e.g. a reward) or Negative (funds deducted
/// somewhere without an equal and opposite addition - e.g. a slash or
/// system fee payment).
///
/// Since they are unsigned, the actual type is always Positive or Negative.
/// The trait makes no distinction except to define the `Opposite` type.
///
/// New instances of zero value can be created (`zero`) and destroyed
/// (`drop_zero`).
///
/// Existing instances can be `split` and merged either consuming `self` with
/// `merge` or mutating `self` with `subsume`. If the target is an `Option`,
/// then `maybe_merge` and `maybe_subsume` might work better. Instances can
/// also be `offset` with an `Opposite` that is less than or equal to in value.
///
/// You can always retrieve the raw balance value using `peek`.
#[must_use]
pub trait Imbalance<Balance>: Sized + TryDrop {
	/// The oppositely imbalanced type. They come in pairs.
	type Opposite: Imbalance<Balance>;

	/// The zero imbalance. Can be destroyed with `drop_zero`.
	fn zero() -> Self;

	/// Drop an instance cleanly. Only works if its `self.value()` is zero.
	fn drop_zero(self) -> Result<(), Self>;

	/// Consume `self` and return two independent instances; the first
	/// is guaranteed to be at most `amount` and the second will be the remainder.
	fn split(self, amount: Balance) -> (Self, Self);

	/// Consume `self` and an `other` to return a new instance that combines
	/// both.
	fn merge(self, other: Self) -> Self;

	/// Consume `self` and maybe an `other` to return a new instance that combines
	/// both.
	fn maybe_merge(self, other: Option<Self>) -> Self {
		if let Some(o) = other {
			self.merge(o)
		} else {
			self
		}
	}

	/// Consume an `other` to mutate `self` into a new instance that combines
	/// both.
	fn subsume(&mut self, other: Self);

	/// Maybe consume an `other` to mutate `self` into a new instance that combines
	/// both.
	fn maybe_subsume(&mut self, other: Option<Self>) {
		if let Some(o) = other {
			self.subsume(o)
		}
	}

	/// Consume self and along with an opposite counterpart to return
	/// a combined result.
	///
	/// Returns `Ok` along with a new instance of `Self` if this instance has a
	/// greater value than the `other`. Otherwise returns `Err` with an instance of
	/// the `Opposite`. In both cases the value represents the combination of `self`
	/// and `other`.
	fn offset(self, other: Self::Opposite) -> Result<Self, Self::Opposite>;

	/// The raw value of self.
	fn peek(&self) -> Balance;
}

/// Either a positive or a negative imbalance.
pub enum SignedImbalance<B, P: Imbalance<B>>{
	/// A positive imbalance (funds have been created but none destroyed).
	Positive(P),
	/// A negative imbalance (funds have been destroyed but none created).
	Negative(P::Opposite),
}

impl<
	P: Imbalance<B, Opposite=N>,
	N: Imbalance<B, Opposite=P>,
	B: SimpleArithmetic + FullCodec + Copy + MaybeSerializeDeserialize + Debug + Default,
> SignedImbalance<B, P> {
	pub fn zero() -> Self {
		SignedImbalance::Positive(P::zero())
	}

	pub fn drop_zero(self) -> Result<(), Self> {
		match self {
			SignedImbalance::Positive(x) => x.drop_zero().map_err(SignedImbalance::Positive),
			SignedImbalance::Negative(x) => x.drop_zero().map_err(SignedImbalance::Negative),
		}
	}

	/// Consume `self` and an `other` to return a new instance that combines
	/// both.
	pub fn merge(self, other: Self) -> Self {
		match (self, other) {
			(SignedImbalance::Positive(one), SignedImbalance::Positive(other)) =>
				SignedImbalance::Positive(one.merge(other)),
			(SignedImbalance::Negative(one), SignedImbalance::Negative(other)) =>
				SignedImbalance::Negative(one.merge(other)),
			(SignedImbalance::Positive(one), SignedImbalance::Negative(other)) =>
				if one.peek() > other.peek() {
					SignedImbalance::Positive(one.offset(other).ok().unwrap_or_else(P::zero))
				} else {
					SignedImbalance::Negative(other.offset(one).ok().unwrap_or_else(N::zero))
				},
			(one, other) => other.merge(one),
		}
	}
}

/// Split an unbalanced amount two ways between a common divisor.
pub struct SplitTwoWays<
	Balance,
	Imbalance,
	Part1,
	Target1,
	Part2,
	Target2,
>(PhantomData<(Balance, Imbalance, Part1, Target1, Part2, Target2)>);

impl<
	Balance: From<u32> + Saturating + Div<Output=Balance>,
	I: Imbalance<Balance>,
	Part1: U32,
	Target1: OnUnbalanced<I>,
	Part2: U32,
	Target2: OnUnbalanced<I>,
> OnUnbalanced<I> for SplitTwoWays<Balance, I, Part1, Target1, Part2, Target2>
{
	fn on_nonzero_unbalanced(amount: I) {
		let total: u32 = Part1::VALUE + Part2::VALUE;
		let amount1 = amount.peek().saturating_mul(Part1::VALUE.into()) / total.into();
		let (imb1, imb2) = amount.split(amount1);
		Target1::on_unbalanced(imb1);
		Target2::on_unbalanced(imb2);
	}
}

/// Abstraction over a fungible assets system.
pub trait Currency<AccountId> {
	/// The balance of an account.
	type Balance: SimpleArithmetic + FullCodec + Copy + MaybeSerializeDeserialize + Debug + Default;

	/// The opaque token type for an imbalance. This is returned by unbalanced operations
	/// and must be dealt with. It may be dropped but cannot be cloned.
	type PositiveImbalance: Imbalance<Self::Balance, Opposite=Self::NegativeImbalance>;

	/// The opaque token type for an imbalance. This is returned by unbalanced operations
	/// and must be dealt with. It may be dropped but cannot be cloned.
	type NegativeImbalance: Imbalance<Self::Balance, Opposite=Self::PositiveImbalance>;

	// PUBLIC IMMUTABLES

	/// The combined balance of `who`.
	fn total_balance(who: &AccountId) -> Self::Balance;

	/// Same result as `slash(who, value)` (but without the side-effects) assuming there are no
	/// balance changes in the meantime and only the reserved balance is not taken into account.
	fn can_slash(who: &AccountId, value: Self::Balance) -> bool;

	/// The total amount of issuance in the system.
	fn total_issuance() -> Self::Balance;

	/// The minimum balance any single account may have. This is equivalent to the `Balances` module's
	/// `ExistentialDeposit`.
	fn minimum_balance() -> Self::Balance;

	/// Reduce the total issuance by `amount` and return the according imbalance. The imbalance will
	/// typically be used to reduce an account by the same amount with e.g. `settle`.
	///
	/// This is infallible, but doesn't guarantee that the entire `amount` is burnt, for example
	/// in the case of underflow.
	fn burn(amount: Self::Balance) -> Self::PositiveImbalance;

	/// Increase the total issuance by `amount` and return the according imbalance. The imbalance
	/// will typically be used to increase an account by the same amount with e.g.
	/// `resolve_into_existing` or `resolve_creating`.
	///
	/// This is infallible, but doesn't guarantee that the entire `amount` is issued, for example
	/// in the case of overflow.
	fn issue(amount: Self::Balance) -> Self::NegativeImbalance;

	/// The 'free' balance of a given account.
	///
	/// This is the only balance that matters in terms of most operations on tokens. It alone
	/// is used to determine the balance when in the contract execution environment. When this
	/// balance falls below the value of `ExistentialDeposit`, then the 'current account' is
	/// deleted: specifically `FreeBalance`. Further, the `OnFreeBalanceZero` callback
	/// is invoked, giving a chance to external modules to clean up data associated with
	/// the deleted account.
	///
	/// `system::AccountNonce` is also deleted if `ReservedBalance` is also zero (it also gets
	/// collapsed to zero if it ever becomes less than `ExistentialDeposit`.
	fn free_balance(who: &AccountId) -> Self::Balance;

	/// Returns `Ok` iff the account is able to make a withdrawal of the given amount
	/// for the given reason. Basically, it's just a dry-run of `withdraw`.
	///
	/// `Err(...)` with the reason why not otherwise.
	fn ensure_can_withdraw(
		who: &AccountId,
		_amount: Self::Balance,
		reasons: WithdrawReasons,
		new_balance: Self::Balance,
	) -> DispatchResult;

	// PUBLIC MUTABLES (DANGEROUS)

	/// Transfer some liquid free balance to another staker.
	///
	/// This is a very high-level function. It will ensure all appropriate fees are paid
	/// and no imbalance in the system remains.
	fn transfer(
		source: &AccountId,
		dest: &AccountId,
		value: Self::Balance,
		existence_requirement: ExistenceRequirement,
	) -> DispatchResult;

	/// Deducts up to `value` from the combined balance of `who`, preferring to deduct from the
	/// free balance. This function cannot fail.
	///
	/// The resulting imbalance is the first item of the tuple returned.
	///
	/// As much funds up to `value` will be deducted as possible. If this is less than `value`,
	/// then a non-zero second item will be returned.
	fn slash(
		who: &AccountId,
		value: Self::Balance
	) -> (Self::NegativeImbalance, Self::Balance);

	/// Mints `value` to the free balance of `who`.
	///
	/// If `who` doesn't exist, nothing is done and an Err returned.
	fn deposit_into_existing(
		who: &AccountId,
		value: Self::Balance
	) -> result::Result<Self::PositiveImbalance, DispatchError>;

	/// Similar to deposit_creating, only accepts a `NegativeImbalance` and returns nothing on
	/// success.
	fn resolve_into_existing(
		who: &AccountId,
		value: Self::NegativeImbalance,
	) -> result::Result<(), Self::NegativeImbalance> {
		let v = value.peek();
		match Self::deposit_into_existing(who, v) {
			Ok(opposite) => Ok(drop(value.offset(opposite))),
			_ => Err(value),
		}
	}

	/// Adds up to `value` to the free balance of `who`. If `who` doesn't exist, it is created.
	///
	/// Infallible.
	fn deposit_creating(
		who: &AccountId,
		value: Self::Balance,
	) -> Self::PositiveImbalance;

	/// Similar to deposit_creating, only accepts a `NegativeImbalance` and returns nothing on
	/// success.
	fn resolve_creating(
		who: &AccountId,
		value: Self::NegativeImbalance,
	) {
		let v = value.peek();
		drop(value.offset(Self::deposit_creating(who, v)));
	}

	/// Removes some free balance from `who` account for `reason` if possible. If `liveness` is
	/// `KeepAlive`, then no less than `ExistentialDeposit` must be left remaining.
	///
	/// This checks any locks, vesting, and liquidity requirements. If the removal is not possible,
	/// then it returns `Err`.
	///
	/// If the operation is successful, this will return `Ok` with a `NegativeImbalance` whose value
	/// is `value`.
	fn withdraw(
		who: &AccountId,
		value: Self::Balance,
		reasons: WithdrawReasons,
		liveness: ExistenceRequirement,
	) -> result::Result<Self::NegativeImbalance, DispatchError>;

	/// Similar to withdraw, only accepts a `PositiveImbalance` and returns nothing on success.
	fn settle(
		who: &AccountId,
		value: Self::PositiveImbalance,
		reasons: WithdrawReasons,
		liveness: ExistenceRequirement,
	) -> result::Result<(), Self::PositiveImbalance> {
		let v = value.peek();
		match Self::withdraw(who, v, reasons, liveness) {
			Ok(opposite) => Ok(drop(value.offset(opposite))),
			_ => Err(value),
		}
	}

	/// Ensure an account's free balance equals some value; this will create the account
	/// if needed.
	///
	/// Returns a signed imbalance and status to indicate if the account was successfully updated or update
	/// has led to killing of the account.
	fn make_free_balance_be(
		who: &AccountId,
		balance: Self::Balance,
	) -> (
		SignedImbalance<Self::Balance, Self::PositiveImbalance>,
		UpdateBalanceOutcome,
	);
}

/// A currency where funds can be reserved from the user.
pub trait ReservableCurrency<AccountId>: Currency<AccountId> {
	/// Same result as `reserve(who, value)` (but without the side-effects) assuming there
	/// are no balance changes in the meantime.
	fn can_reserve(who: &AccountId, value: Self::Balance) -> bool;

	/// Deducts up to `value` from reserved balance of `who`. This function cannot fail.
	///
	/// As much funds up to `value` will be deducted as possible. If the reserve balance of `who`
	/// is less than `value`, then a non-zero second item will be returned.
	fn slash_reserved(
		who: &AccountId,
		value: Self::Balance
	) -> (Self::NegativeImbalance, Self::Balance);

	/// The amount of the balance of a given account that is externally reserved; this can still get
	/// slashed, but gets slashed last of all.
	///
	/// This balance is a 'reserve' balance that other subsystems use in order to set aside tokens
	/// that are still 'owned' by the account holder, but which are suspendable.
	///
	/// When this balance falls below the value of `ExistentialDeposit`, then this 'reserve account'
	/// is deleted: specifically, `ReservedBalance`.
	///
	/// `system::AccountNonce` is also deleted if `FreeBalance` is also zero (it also gets
	/// collapsed to zero if it ever becomes less than `ExistentialDeposit`.
	fn reserved_balance(who: &AccountId) -> Self::Balance;


	/// Moves `value` from balance to reserved balance.
	///
	/// If the free balance is lower than `value`, then no funds will be moved and an `Err` will
	/// be returned to notify of this. This is different behavior than `unreserve`.
	fn reserve(who: &AccountId, value: Self::Balance) -> DispatchResult;

	/// Moves up to `value` from reserved balance to free balance. This function cannot fail.
	///
	/// As much funds up to `value` will be moved as possible. If the reserve balance of `who`
	/// is less than `value`, then the remaining amount will be returned.
	///
	/// # NOTES
	///
	/// - This is different from `reserve`.
	/// - If the remaining reserved balance is less than `ExistentialDeposit`, it will
	/// invoke `on_reserved_too_low` and could reap the account.
	fn unreserve(who: &AccountId, value: Self::Balance) -> Self::Balance;

	/// Moves up to `value` from reserved balance of account `slashed` to free balance of account
	/// `beneficiary`. `beneficiary` must exist for this to succeed. If it does not, `Err` will be
	/// returned.
	///
	/// As much funds up to `value` will be deducted as possible. If this is less than `value`,
	/// then `Ok(non_zero)` will be returned.
	fn repatriate_reserved(
		slashed: &AccountId,
		beneficiary: &AccountId,
		value: Self::Balance
	) -> result::Result<Self::Balance, DispatchError>;
}

/// An identifier for a lock. Used for disambiguating different locks so that
/// they can be individually replaced or removed.
pub type LockIdentifier = [u8; 8];

/// A currency whose accounts can have liquidity restrictions.
pub trait LockableCurrency<AccountId>: Currency<AccountId> {
	/// The quantity used to denote time; usually just a `BlockNumber`.
	type Moment;

	/// Create a new balance lock on account `who`.
	///
	/// If the new lock is valid (i.e. not already expired), it will push the struct to
	/// the `Locks` vec in storage. Note that you can lock more funds than a user has.
	///
	/// If the lock `id` already exists, this will update it.
	fn set_lock(
		id: LockIdentifier,
		who: &AccountId,
		amount: Self::Balance,
		until: Self::Moment,
		reasons: WithdrawReasons,
	);

	/// Changes a balance lock (selected by `id`) so that it becomes less liquid in all
	/// parameters or creates a new one if it does not exist.
	///
	/// Calling `extend_lock` on an existing lock `id` differs from `set_lock` in that it
	/// applies the most severe constraints of the two, while `set_lock` replaces the lock
	/// with the new parameters. As in, `extend_lock` will set:
	/// - maximum `amount`
	/// - farthest duration (`until`)
	/// - bitwise mask of all `reasons`
	fn extend_lock(
		id: LockIdentifier,
		who: &AccountId,
		amount: Self::Balance,
		until: Self::Moment,
		reasons: WithdrawReasons,
	);

	/// Remove an existing lock.
	fn remove_lock(
		id: LockIdentifier,
		who: &AccountId,
	);
}

/// A currency whose accounts can have balances which vest over time.
pub trait VestingCurrency<AccountId>: Currency<AccountId> {
	/// The quantity used to denote time; usually just a `BlockNumber`.
	type Moment;

	/// Get the amount that is currently being vested and cannot be transferred out of this account.
	fn vesting_balance(who: &AccountId) -> Self::Balance;

	/// Adds a vesting schedule to a given account.
	///
	/// If there already exists a vesting schedule for the given account, an `Err` is returned
	/// and nothing is updated.
	fn add_vesting_schedule(
		who: &AccountId,
		locked: Self::Balance,
		per_block: Self::Balance,
		starting_block: Self::Moment,
	) -> DispatchResult;

	/// Remove a vesting schedule for a given account.
	fn remove_vesting_schedule(who: &AccountId);
}

bitmask! {
	/// Reasons for moving funds out of an account.
	#[derive(Encode, Decode)]
	pub mask WithdrawReasons: i8 where

	/// Reason for moving funds out of an account.
	#[derive(Encode, Decode)]
	flags WithdrawReason {
		/// In order to pay for (system) transaction costs.
		TransactionPayment = 0b00000001,
		/// In order to transfer ownership.
		Transfer = 0b00000010,
		/// In order to reserve some funds for a later return or repatriation
		Reserve = 0b00000100,
		/// In order to pay some other (higher-level) fees.
		Fee = 0b00001000,
		/// In order to tip a validator for transaction inclusion.
		Tip = 0b00010000,
	}
}

pub trait Time {
	type Moment: SimpleArithmetic + Parameter + Default + Copy;

	fn now() -> Self::Moment;
}

impl WithdrawReasons {
	/// Choose all variants except for `one`.
	///
	/// ```rust
	/// # use frame_support::traits::{WithdrawReason, WithdrawReasons};
	/// # fn main() {
	/// assert_eq!(
	/// 	WithdrawReason::Fee | WithdrawReason::Transfer | WithdrawReason::Reserve | WithdrawReason::Tip,
	/// 	WithdrawReasons::except(WithdrawReason::TransactionPayment),
	///	);
	/// # }
	/// ```
	pub fn except(one: WithdrawReason) -> WithdrawReasons {
		let mut mask = Self::all();
		mask.toggle(one);
		mask
	}
}

/// Trait for type that can handle incremental changes to a set of account IDs.
pub trait ChangeMembers<AccountId: Clone + Ord> {
	/// A number of members `incoming` just joined the set and replaced some `outgoing` ones. The
	/// new set is given by `new`, and need not be sorted.
	fn change_members(incoming: &[AccountId], outgoing: &[AccountId], mut new: Vec<AccountId>) {
		new.sort_unstable();
		Self::change_members_sorted(incoming, outgoing, &new[..]);
	}

	/// A number of members `_incoming` just joined the set and replaced some `_outgoing` ones. The
	/// new set is thus given by `sorted_new` and **must be sorted**.
	///
	/// NOTE: This is the only function that needs to be implemented in `ChangeMembers`.
	fn change_members_sorted(
		incoming: &[AccountId],
		outgoing: &[AccountId],
		sorted_new: &[AccountId],
	);

	/// Set the new members; they **must already be sorted**. This will compute the diff and use it to
	/// call `change_members_sorted`.
	fn set_members_sorted(new_members: &[AccountId], old_members: &[AccountId]) {
		let (incoming, outgoing) = Self::compute_members_diff(new_members, old_members);
		Self::change_members_sorted(&incoming[..], &outgoing[..], &new_members);
	}

	/// Set the new members; they **must already be sorted**. This will compute the diff and use it to
	/// call `change_members_sorted`.
	fn compute_members_diff(
		new_members: &[AccountId],
		old_members: &[AccountId]
	) -> (Vec<AccountId>, Vec<AccountId>) {
		let mut old_iter = old_members.iter();
		let mut new_iter = new_members.iter();
		let mut incoming = Vec::new();
		let mut outgoing = Vec::new();
		let mut old_i = old_iter.next();
		let mut new_i = new_iter.next();
		loop {
			match (old_i, new_i) {
				(None, None) => break,
				(Some(old), Some(new)) if old == new => {
					old_i = old_iter.next();
					new_i = new_iter.next();
				}
				(Some(old), Some(new)) if old < new => {
					outgoing.push(old.clone());
					old_i = old_iter.next();
				}
				(Some(old), None) => {
					outgoing.push(old.clone());
					old_i = old_iter.next();
				}
				(_, Some(new)) => {
					incoming.push(new.clone());
					new_i = new_iter.next();
				}
			}
		}
		(incoming, outgoing)
	}
}

impl<T: Clone + Ord> ChangeMembers<T> for () {
	fn change_members(_: &[T], _: &[T], _: Vec<T>) {}
	fn change_members_sorted(_: &[T], _: &[T], _: &[T]) {}
	fn set_members_sorted(_: &[T], _: &[T]) {}
}

/// Trait for type that can handle the initialization of account IDs at genesis.
pub trait InitializeMembers<AccountId> {
	/// Initialize the members to the given `members`.
	fn initialize_members(members: &[AccountId]);
}

impl<T> InitializeMembers<T> for () {
	fn initialize_members(_: &[T]) {}
}

// A trait that is able to provide randomness.
pub trait Randomness<Output> {
	/// Get a "random" value
	///
	/// Being a deterministic blockchain, real randomness is difficult to come by. This gives you
	/// something that approximates it. `subject` is a context identifier and allows you to get a
	/// different result to other callers of this function; use it like
	/// `random(&b"my context"[..])`.
	fn random(subject: &[u8]) -> Output;

	/// Get the basic random seed.
	///
	/// In general you won't want to use this, but rather `Self::random` which allows you to give a
	/// subject for the random result and whose value will be independently low-influence random
	/// from any other such seeds.
	fn random_seed() -> Output {
		Self::random(&[][..])
	}
}

/// Implementors of this trait provide information about whether or not some validator has
/// been registered with them. The [Session module](../../pallet_session/index.html) is an implementor.
pub trait ValidatorRegistration<ValidatorId> {
	/// Returns true if the provided validator ID has been registered with the implementing runtime
	/// module
	fn is_registered(id: &ValidatorId) -> bool;
}

/// Something that can convert a given module into the index of the module in the runtime.
///
/// The index of a module is determined by the position it appears in `construct_runtime!`.
pub trait ModuleToIndex {
	/// Convert the given module `M` into an index.
	fn module_to_index<M: 'static>() -> Option<usize>;
}

impl ModuleToIndex for () {
	fn module_to_index<M: 'static>() -> Option<usize> { Some(0) }
}